Abstract

A novel graphene-based grating-coupled metamaterial structure is proposed, and the optical response of this structure can be obviously controlled by the Fermi level, which is theoretically regulated by the electric field of an applied voltage. The upper graphene monolayer can be intensely excited with the aid of periodic grating and thus it can be considered a bright mode. Meanwhile, the lower graphene monolayer cannot be directly excited, but it could be indirectly activated by the help of bright mode. The plasmonic polaritons resulting from the light-graphene interaction resonance can lead to a destructive interference effect, leading to a plasmonic induced transparency. This structure has a simple construction and retains the integrity of graphene. In the meantime, it can achieve a good tuning effect by adjusting the voltage regulation of microstructure array and it can obtain an outstanding reflection efficiency. Thus, this graphene-based metamaterial structure with these properties is very suitable for the plasmonic optical reflector. In contacting with the characteristics of material, the group delay of this device can reach to 0.3ps, which can well match the slow light performance. Therefore, the device is expected to make some contribution in optical reflection and slow light devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call