Abstract

This paper reports on the tolerance of low-dimensional InAs/InP quantum-dash- and quantum-dot-based semiconductor lasers to optical feedback in the 1.55 mum window. For this purpose, the onset of coherence collapse (CC) is experimentally determined and systematically investigated as a function of different laser parameters, such as the injection current, differential gain, temperature, and photon lifetime. It is in particular found that for both material systems the onset of CC increases with the injection current in a similar way to bulk or quantum-well-based devices. Of most importance, we experimentally show that the differential gain plays a key role in the optical feedback tolerance. It is indeed shown to determine not only the range of the onset of CC but also the dependence of this threshold both on the temperature and laser cavity length. Increasing the operating temperature from 25degC to 85degC leads to a decrease of the onset of CC by a factor of only ~3 dB, well accounted for by the variation of the differential gain in this temperature range. We find no difference in the tolerance to external reflections of a truly 3-D confined quantum-dot-based laser and a quantum dash device of the same cavity length, which have similar differential gains. A tentative analysis of our data is finally carried out, based on existing models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.