Abstract
The challenges presented by the directly reflected field in optical feedback cavity-enhanced spectroscopy systems serve as substantial obstacles, introducing additional complexity to existing systems and compromising their sensitivity, as the underlying mechanisms of its adverse effects remain not fully understood. This study aims to address this issue by introducing a comprehensive analytical model. Additionally, frequency locking can be achieved by decreasing the feedback rate, the laser's linewidth enhancement factor, and the directly reflected field, and by increasing the refractive index of the gain medium, the length of the laser's resonant cavity, the electric field reflectivity of the laser's output facet, and the resonant field. These parameters can affect the feedback coupling rate pre-factor, and for a resonant cavity with a length of 0.394 m, optical feedback can only be established when the feedback coupling rate pre-factor is less than 1.05 × 109. Through experimental validation, we successfully confirm the effectiveness of the proposed solution in eliminating the detrimental effects of the directly reflected field. Importantly, this suppression is achieved without compromising other aspects of the system's performance. The research findings not only offer the potential to optimize various cavity-enhanced spectroscopy systems that rely on optical feedback but also show promising applications in advancing the development of high-purity spectrum diode lasers utilizing optical feedback from an external high-finesse cavity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.