Abstract

This Letter proposes an optical encryption technique that disguises the information with modular arithmetic concepts and time-varying noise components that are unknown to the receiver. Optical encryption systems that use these techniques produce a nondeterministic system response, as well as noise like image data that can easily be generated with ordinary spatial light modulators. The principle of this technique is demonstrated for the double random phase encoding (DRPE) method. The conventional DRPE method has major vulnerabilities for Dirac signal and plain signal attacks, making them impractical for secure encryption. It is shown that the proposed encryption technique provides a robustness against these types of attacks, allowing optical DRPE to be employed in secure encryptions. Moreover, applications of this Letter are not limited to DRPE alone but can also be adopted by other optical encryption techniques such as fractional Fourier transform and Fresnel-transform-based techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.