Abstract

We report on experimental observation of optical emission of graphene induced by an intense terahertz (THz) pulse. P-doped chemical-vapor-deposition graphene with an initial Fermi energy of about 200 meV was used; optical photons were detected in the 2.0--3.5 eV range. Emission started when the THz field amplitude exceeded 100 kV/cm. For the THz fields from 200 to 300 kV/cm, the temperature of optical radiation was constant, while the number of emitted photons increased by several dozen times. This fact clearly indicates multiplication of electron-hole pairs induced by an external field and not electron heating. The experimental data are in good agreement with the theory of Landau-Zener interband transitions. It is shown theoretically that Landau-Zener transitions are possible even in the case of heavily doped graphene because the strong THz field removes quasiparticles from the region of interband transitions for several femtoseconds, which cancels the Pauli blocking effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.