Abstract

A spectroscopic method has been developed for measuring molecular influxes and particle densities in fusion edge plasmas, which is based on the H 2 and D 2 Fulcher emission bands around 600 nm wavelength. A first application to the ASDEX Upgrade divertor plasma is described. The influx of hydrogen molecules was determined from the population of the upper Fulcher state using the theoretical number of ionization and dissociation events per Fulcher photon ( S eff + D eff)/XB Ful, as calculated by a collisional-radiative model. These results were compared with expectations on the basis of the atomic hydrogen fluxes and a typical molecule/atom ratio. Measurements and calculations agree in their time dependence, but the experimental values are somewhat lower, which may be within the error margin or of more significance. The Fulcher radiation was also compared directly to B2-EIRENE predictions, resulting in a higher discrepancy. In addition, the vibrational population of the ground state molecules was determined from that of the excited state using a method based on Franck–Condon factors. It can be characterized by a T vib between 3000 and 9000 K, inversely correlated with electron temperature. This variation is predicted by the collisional-radiative code and even allows an estimate of T e. Vibrational excitation increases ionization and dissociation rate coefficients, as clearly demonstrated by the code calculations. It is therefore very likely that the observed discrepancy in molecular intensity is mainly caused by the omission of vibrational excitation in the present version of B2-EIRENE. The described flux measurements are expected to be accurate above T e=5 eV, but are more difficult at lower temperatures due to the strong T e dependence of ( S eff + D eff)/XB Ful in that region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.