Abstract

An electromagnetic vector-field model for design of optical components based on the finite-difference time-domain method and radiation integrals is presented. Its ability to predict the optical electromagnetic dynamics in structures with complex material distributions is demonstrated. Theoretical and numerical investigations of finite-length surface-relief structures embedded in polymer dielectric waveguiding materials are presented. The importance of several geometric parameter dependencies is indicated as far-field power distributions are rearranged between diffraction orders. The influences of the variation in grating period, modulation depth, length, and profile are investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call