Abstract

Fluorine-doped ZnO (FZO) thin films have several potential applications, for instance, in low-cost optoelectronic devices; understanding how their optical, electrical, and photoresponse properties depend on and can be controlled via the synthesis conditions is essential for application of these systems. In this study, FZO thin films with different annealing temperatures were grown on muscovite mica substrates via sol–gel spin-coating. In photoluminescence measurements, a strong peak in the ultraviolet (UV) region and a broad peak in the visible region were observed for all films, being strongly dependent on the annealing temperature. The transmittance of the annealed films was slightly higher than that of as-grown film, and the absorption edges in the transmittance spectra red-shifted with increasing annealing temperature. The optical bandgap and Urbach energy of the films were calculated from the absorption coefficient values, using the Tauc and Urbach relations, respectively. Finally, the electrical (i.e., resistivity and carrier concentration) and photoresponse properties of the films were investigated to assess their applicability for use in FZO-based UV detectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.