Abstract
Optical singularity states, which significantly affect propagation properties of light in free space or optical medium, can be geometrically classified into screw and edge types. These different types of singularity states do not exhibit direct connection, being decoupled from each other in the absence of external perturbations. Here we demonstrate a novel optical process in which a higher-order edge singularity state initially nested in the propagating Gaussian light field gradually involves into a screw singularity with a new-born topological charge determined by order of the edge state. The considered edge state comprises an equal superposition of oppositely charged vortex and antivortex modes. We theoretically and experimentally realize this edge-to-screw conversion process by introducing intrinsic vortex–antivortex interaction. We also present a geometrical representation for mapping this dynamical process, based on the higher-order orbital Poincaré sphere. Within this framework, the edge-to-screw conversion is explained by a mapping of state evolution from the equator to the north or south pole of the Poincaré sphere. Our demonstration provides a novel approach for manipulating singularity state by the intrinsic vortex–antivortex interactions. The presented phenomenon can be also generalized to other wave systems such as matter wave, water wave, and acoustic wave.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.