Abstract

Truncated optical Bessel (TOB) beams are an orthonormal set of optical vortex beams that possess orbital angular momentum (OAM). It is characterized by a significant longitudinal electric field component at the sub-wavelength scales. The photons of a circularly polarized TOB beam also carry spin angular momentum (SAM) and can interact with a two-level atom, in the far-off resonance regime, giving rise to an optical dipole potential energy that involves a spin–orbit term that stems from the inclusion of the longitudinal field component. When a two-level atom is simultaneously irradiated by two TOB beams, the optical dipole potential energy, in some special cases, is entirely dependent on the OAM–SAM coupling. We explore the cold-atom trapping options enabled by the use of TOB beams, either single ones or combinations thereof. We put emphasis on case in which the OAM–SAM coupling is the dominant contribution. The similarities and differences between the results obtained for the TOB beams and those for the Laguerre–Gaussian beams are also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call