Abstract

We have implemented a Finite-Beam Rigorous Coupled-Wave Approach (FB-RCWA) to solve for guided-optics propagation in the presence of holographic slanted Bragg gratings, embedded in the core of slab waveguides and operated in Extreme Asymmetrical Scattering (EAS) configuration. In EAS a resonance condition can be established, as proceeding from the design parameters. Diffraction efficiency can be evaluated as the ratio of the flux of diffracted power P1, on a suitably defined cross-section along the propagation of diffracted beam, and input power P0. By FBRCWA, no limitation in the depth of grating modulation is assumed. The first-order diffracted field in resonant Bragg condition propagates along the waveguide. EAS in thick waveguides operating in highly multimodal regime can be investigated, as well as macroscopic volumes and widely extended illuminated regions up to a few millimeters. In thick slabs, η > 90% is demonstrated, for input illuminated apertures of length L ≥ Lc, where Lc is the optimum coupling length. The effects of detuning from Bragg condition, both in distribution and amplitude of the diffracted field, are quantified. Diffraction efficiency, i.e. optical coupling, bandwidth is evaluated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.