Abstract
Diffraction patterns that are highly reproducible, of useful quality, and consistent with the input generating them can be easily obtained with a microscope system. The input can be either a reduced photograph or a thin section. With two exceptions, the relationships between a thin section and its diffraction pattern produced by a petrographic microscope are the same as the relationships between a photographic input and its diffraction pattern produced by a conventional ODA system. The exceptions are that the diffraction patterns generated directly by the thin sections may be asymmetrical or, if the thin section is sufficiently heterogeneous, may be smeared. The microscope system is generally more useful than a conventional ODA system for the analysis of microfabric in thin sections. One can readily use the microscope system to analyze elements of widely varying spatial frequency simply by changing the objectives. The diffraction patterns can be magnified by changing to a higherpower ocular. In most cases the microscope-generated diffraction pattern transmits the useful spatial information in the thin section more completely than the conventionally produced diffraction pattern; the photographic inputs for the conventionally produced diffraction pattern emphasize lower-frequency spatial information. This property, combined with the microscope system's better response to twinning, makes the microscope more sensitive to commonly used microfabric elements. For the analysis of thin sections, a conventional ODA system is superior to the microscope system in only three cases. First, if one wants to analyze the entire thin section at one time, a conventional system must be used with a photographic input of the thin section. Second, if the thin section is extremely heterogeneous (crystallographically or mineralogically), the microscope-generated diffraction pattern may exhibit gross smearing even with the highestpower objectives available. Finally, the thin section may contain only elements of low spatial frequency that will not generate diffraction dots far enough radially from the central spot to be resolvable. More study will be needed to establish the precision of spatial frequency measurements from diffraction patterns generated directly by thin sections with the microscope system. Experiments with a variety of film types and sources of illumination will, in all likelihood, lead to a reduction in the exposure times used to record diffraction patterns with the microscope (9). A complete ODA system must have directional and frequency-filtering capabilities. In order to establish these capabilities for the microscope system, components will need to be designed and fabricated and the microscope body may have to be modified. The possibility of applying the microscope technique in reflected light on a real-time basis should be investigated. This would be a valuable tool in the quantitative analysis of microfracture initiation and propagation and the analysis of overall fabric changes during experimental deformation of rock both in situ and in the laboratory. The technique presented here can be used with a less expensive microscope, if it has a focusable Bertrand lens. Our experiments with relatively inexpensive microscopes indicated that the only major problem is alignment of the illuminating system (light-filter-condenser).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.