Abstract
Gradual substitution of coal with green ammonia is a practical approach for the coal power phasedown at a minimal cost of modification, but the ignition and gas-phase reaction during co-firing NH3 with coal remain largely unclear. In this work, we investigate the co-combustion behaviors of NH3 and a high-volatile coal on a two-stage flat flame burner. Remarkably, the post-flame oxygen mole fraction Xi,O2 of the inner stage can be manipulated to reproduce a proper reducing-to-oxidizing environment that coal particles experience in the practical combustor. We first reveal that, under certain values of Xi,O2 and NH3 co-firing energy ratios ENH3, the reaction intensity (manifested by OH-PLIF signals) in the NH3-coal flame is stronger than burning either pure coal or NH3. This synergetic effect originates from an NH3-combustion-induced enhancement of volatile release. We then propose a characteristic time scale τOH from the OH signals for the initiation of overall reactions in the system. In the case of Xi,O2=0, τOH monotonically increases with ENH3, while for Xi,O2=0.2, the trend transitions to a decreasing one. It can be interpreted by comparing τOH with the characteristic O2 diffusion time, coal particle heating time, and the coal pyrolysis time under different Xi,O2. Furthermore, the coal particle ignition in coal-NH3 flames can no longer be determined by visual images. Instead, we apply CH* chemiluminescence to identify the stages of coal particle ignition and volatile combustion in the NH3-coal flame. While NH3 addition has both positive (elevating temperatures & diluting coal particles) and negative (consuming O2) effects on coal ignition, the combined influence of ENH3 is marginal on coal ignition delay time. On the other hand, the volatile combustion time decreases linearly with ENH3, suggesting a pure effect of reduced coal feed rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.