Abstract

Ferrocene-modified poly(N-isopropylacrylamide)-based microgels were synthesized, characterized, and used to construct optical devices (etalons). The response of the microgels and etalons to H2O2 was investigated, and we show that both the microgel diameter and the optical properties of the etalons depend on the solution concentration of H2O2 from 0.6 to 35 mM. This behavior is a direct result of the oxidation of ferrocene, which influences the microgel diameter. This was also demonstrated by electrochemical-mediated oxidation/reduction of ferrocene using cyclic voltammetry. We go on to show that these materials could be used to monitor H2O2 that is generated from enzymatic reactions. Specifically, we show that the H2O2 generated from the oxidation of glucose catalyzed by glucose oxidase could be quantified. Finally, the devices can be reused multiple times via a regeneration process. This investigation illustrates the versatility of the etalon system to detect species of broad relevance and how they could potentially be used to quantify products of biological reactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.