Abstract

Silicon nanowires (SiNWs) are an important class of materials for biomedical and electronics applications, with the nanowire diameter playing a fundamental role in device functionality. Here we present a method, based on light scattering intensity and ensemble electron microcopy (EM) measurements, that allows for a precise optical determination of a specific NW’s diameter within an accuracy of a few nanometers (4.8 nm), an error of only ∼8.0%. This method takes advantage of the strong dependence of optical scattering on SiNW diameter to construct an optical to EM transform, with Lorentz-Mie theory showing that this method can be used for NWs up to ∼150 nm in diameter. Additionally, this technique offers some potential insights into biophysical interactions, allowing the optical calibration of individual intracellular SiNW force probes, enabling a ∼100-fold improvement in experimental uncertainty. Using these probes, we were able to measure drug-induced vasoconstriction in human aortic smooth muscle cells (HASMCs), which exerted ∼171 pN of force after ∼30 min of exposure to the hormone angiotension II. These findings represent a scalable method for characterizing SiNW-based devices that are easily extendable to other materials and could be of use in ensuring quality control for future photovoltaics, optical sensors, and nanomaterial biosensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.