Abstract

In this paper, we propose a new optical detection scheme for nanopore-based DNA sequencing with high resolution towards eventual base identification. We use ultraviolet light for excitation of a fluorescent probe attached to DNA and a nanopore in the silicon membrane that has a significantly large refractive index and an extinction coefficient at ultraviolet wavelengths. In this study, numerical electromagnetic simulation revealed that the z-polarization component (perpendicular to the membrane plane) of the electric field was dominant near the nanopore and generated a large electric field gradient at the nanopore exit, typically with a decay length of 2 nm for a nanopore with diameter of 7 nm. The large extinction coefficient contributed to reduction in background noise coming from fluorophore-labeled DNA strands that remain behind the membrane (the cis side of the membrane). We observed a high signal-to-noise ratio of single DNA translocation events under the application of an electric field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call