Abstract

Several quantum cryptographic schemes have been proposed and realized experimentally in the past. However, even with an advancement in quantum technology and escalated interest in the designing of direct secure quantum communication schemes there are not many experimental implementations of these cryptographic schemes. In this paper, we have provided a set of optical circuits for such quantum cryptographic schemes, which have not yet been realized experimentally by modifying some of our theoretically proposed secure communication schemes. Specifically, we have proposed optical designs for the implementation of two single photon and one entangled state based controlled quantum dialogue schemes and subsequently reduced our optical designs to yield simpler designs for realizing other secure quantum communication tasks, i.e., controlled deterministic secure quantum communication, quantum dialogue, quantum secure direct communication, quantum key agreement, and quantum key distribution. We have further proposed an optical design for an entanglement swapping based deterministic secure quantum communication and its controlled counterpart.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.