Abstract

We describe the optical design and performance of the Next-Generation airborne Imaging Spectrometer (NGIS) currently being constructed at Caltech's Jet Propulsion Laboratory. The new, high-resolution instrument incorporates a number of design advantages including a two-mirror anastigmatic telescope for simplified alignment and high throughput, as well as a concentric, multi-blazed grating for tailored broadband efficiency. A detailed tolerancing and sensitivity approach reveals tight requirements that must be satisfied for spectral calibration and boresight stability. This improved spectral and pointing stability, combined with high uniformity and high signal-to-noise ratio allows us to generate spectrometry measurements capable of answering challenging science questions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.