Abstract
The Earth 2.0 (ET) mission is a Chinese next-generation space mission aiming at detecting thousands of terrestrial-like planets, including habitable Earth-like planets orbiting solar type stars (i.e., Earth’s 2.0s), cold low-mass planets, and free-floating planets. The ET mission will use six 300 mm diameter wide field telescope arrays to continuously monitor 1.2 million FGKM dwarf stars in the original Kepler field and its adjacent regions for four consecutive years to search for new planets including Earth 2.0s using the transit technique. The six telescopes have the same configuration, point to the same sky area, and constitute the main scientific payload. Each telescope has an effective aperture of 300 mm with a very wide field of view (FOV) of 500 square degrees and a wavelength coverage of 450-900 nm. Each telescope is equipped with a focal plane mosaic camera. The mosaic camera is composed of 2×2, 9k×9k CMOS detectors with pixel size of 10μm. The optical design results in the diameter of the 90% encircled energy (EE90%) less than 40μm (or 4 pixels) over the entire FOV. About 20% vignetting at the edge of the FOV is introduced to provide good throughput for the entire FOV while keeping optics size and weight down to reduce manufacturing risk and scientific payload within the mass and volume limit. In this paper, we will present the optical design details, including influence analysis of various factors on image quality, e.g., glass material, detector flatness, manufacturing and assembly tolerances. In addition, we will describe temperature stability analysis of the telescope on image quality and photometry measurements.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.