Abstract

Freeform surfaces enable imaginative optics by providing abundant degrees of freedom for an optical designer as compared to spherical surfaces. An off-axis two-mirror–based telescope design is presented, in which the primary mirror is a concave prolate spheroid and the secondary mirror is freeform surface-based. The off-axis configuration is employed here for removing the central obscuration problem which otherwise limits the central maxima in the point spread function. In this proposed design, an extended X−Y polynomial is used as a surface descriptor for the off-axis segment of the secondary mirror. The coefficients of this extended polynomial are directly related to the Seidel aberrations, and are thus optimized here for a better control of asymmetric optical aberrations at various field points. For this design, the aperture stop is located 500 mm before the primary mirror and the entrance pupil diameter is kept as 80 mm. The effective focal length is 439 mm and covers a full field of view of 2 deg. The image quality obtained here is near diffraction limited which can be inferred from metrics such as the spot diagram and modulation transfer function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.