Abstract

Aiming at the problems of low irradiation uniformity and a narrow irradiance regulation range in the existing solar simulators, an optical design method for meteorological solar simulators with high irradiation uniformity and wide-range irradiance is proposed. Using a xenon lamp and a variable coefficient non-coaxial ellipsoid reflector as the concentrator system, we analyze the causes of stray light in the optical integrator. The optimal design method of the integrator based on the anti-crosstalk diaphragm and the light propagation matrix model, which effectively suppress the stray light, is proposed. The irradiance regulation system is designed to continuously regulate the irradiance in a wide range. The optimal design method of the collimated system is given. The rationality of the system design is verified by the simulation of LightTools software. The results show that within the effective irradiation surface of 100mm×100mm, the irradiance is continuously adjustable in the range of 100-1400W/m2, and the irradiation uniformity is better than 99.10% under different irradiances. This research breaks through the limitations of low irradiation uniformity and a narrow irradiance adjustment range of traditional meteorological solar simulators and can provide accurate and reliable solar irradiance for the verification and calibration of pyranometers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call