Abstract

The near-UV (190 to 270 nm) coronal emission lines present a unique opportunity to observe heliospheric plasmas between one and two solar radii. The near-UV coronagraph was specifically designed to obtain observations in these lines from a sounding rocket platform. The design demonstrates that high-resolution, two-dimensional coronal observations in the near-UV are readily achievable within the practical constraints of a sounding rocket. The near-UV coronagraph consists of a reflective, coronagraph telescope followed by an imaging channeled spectrograph. The telescope includes a Lyot stop and an occulter to minimize instrumentally scattered disk radiation. The choice of a mirror objective gives rise to a compact, achromatic telescope with excellent off-axis rejection and good imaging properties. The focal plane package combines a Fabry-Pérot interferometer with a tandem Wadsworth spectrograph to produce a channeled spectrum consisting of a series of two-dimensional (25 x 500 arcsec), narrow-bandpass (~0.1 Å) images at the instrument focal plane. The instrument will produce a number of high-spatial-resolution (< 1 arcsec) coronal images in a single flight.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.