Abstract
A periodic array of vertical InSb nanowires (nws) was designed for photodetectors in the mid-wavelength infrared (MWIR) region (λ = 3–5 μm). Simulations, using the finite element method, were implemented to optimize the nw array geometrical parameters (diameter (D), period (P), and length (L)) for high optical absorptance, which exceeded that of a thin film of equal thickness. Our results showed HE1n resonances in InSb nw arrays can be tuned by adjusting D and P, thus enabling multispectral absorption throughout the near infrared to MWIR region. Optical absorptance was investigated for a practical photodetector consisting of a vertical InSb nw array embedded in bisbenzocyclobutene (BCB) as a support layer for an ultrathin Ni contact layer. Polarization sensitivity of the photodetector is examined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.