Abstract

Now in Phase-B, the architecture of the Wide-Field Infra-Red Survey Telescope (WFIRST) payload has matured since 2013 to accommodate various opto-mechanical constraints. Based on a 2.4-meter aperture Forward Optical Assembly (FOA), the Imaging Optics Assembly (IOA) provides corrected optical fields to each on-board instrument. Using a Three Mirror Anastigmat (TMA) optical design, the Wide-Field Channel (WFC) provides ~1/3-square degree of instantaneous field coverage at 0.11 arcsecond pixel scale. The WFC as-built predictive analysis anticipates near diffraction-limited imaging over a focal plane of 300.8 million pixels, operating in seven panchromatic bands between 0.48 – 2.0μm, or a 1-octive multi-spectral imaging mode from ~0.95-1.93μm. The IOA provides the Coronagraph Instrument (CGI) a collimated beam with very specific wavefront constraints. We present configuration changes since 2013 that improved interfaces, improved testability, and reduced technical risk. We provide an overview of our Integrated Modeling results, performed at an unprecedented level for a phase-A study, to illustrate performance margins with respect to static wavefront error, jitter, and thermal drift.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.