Abstract
Romanian loess -palaeosol sequences are amongst the thickest and most complete available in Europe. These deposits represent an extended continental record of environmental and climatic change during at least five glacial/interglacial cycles. Their chronology, however, is mainly based on relative methods. In this paper, we investigate whether SAR–OSL dating of fine-grained quartz can be used to establish a reliable chronology for Romanian loess. The samples were collected from the loess–palaeosol sequence near Mircea Vodă (Dobrogea, SE Romania). The luminescence characteristics of the fine-grained quartz extracts are investigated to some extent, and indicate that the applied laboratory measurement procedure (SAR) is reliable. An internally consistent set of optical ages is obtained for the loess deposited up to ∼70 ka, and evidence is presented for a varying loess accumulation rate during the Last Glacial. Comparison with independent age control (pedostratigraphy and a newly-developed palaeomagnetic time–depth model) indicates that the optical dating procedure underestimates the true burial age from the penultimate glacial period onwards (i.e. for samples below the last interglacial S1 palaeosol). These results indicate that an apparently reliable laboratory measurement procedure not necessarily yields accurate sedimentation ages. We suggest that quartz-based SAR–OSL ages obtained using the high dose linear region of the growth curve are interpreted with caution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.