Abstract

AbstractThe fast‐growing amount of data that is produced every year creates an urgent need for ultracapacity storage media. However, 2D spatial resolution in the conventional optical data storage media has almost reached the limit. Further enlargement of storage capacity may rely on the development of the next‐generation data storage materials containing multiplexed information dimensions. Herein, a series of novel deep‐trap persistent luminescence materials (Sr1‐xBax)Si2O2N2:Eu/Yb,Dy with multicolor emissions in the whole visible region is developed and demonstrated a bit‐by‐bit optical data storage and readout strategy based on photon trapping and detrapping processes in these materials. Optical data can be handily encoded on a flexible film by a commercially available 405 nm laser and decoded by heating or by 980 nm laser scanning. The decoded information contains tunable spectral characteristics, which allows for the emission–intensity–multiplexing or emission–wavelength–multiplexing. The storage and readout strategy not only shows a great promise in the application of multidimensional rewritable optical data storage, but also opens new opportunities for advanced display technology and information security system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call