Abstract
If two metal nanoparticles are ultimately approached, a tunneling current prevents both an infinite redshift of the bonding dipolar plasmon and an infinite increase of the electric field in the hot spot between the nanoparticles. We argue that a Coulomb blockade suppresses the tunneling current and sustains a redshift even for sub-nanometer approach up to moderate fields. Only for stronger optical fields, the Coulomb blockade is lifted and a charge transfer plasmon is formed. Numerical simulations show that such scenarios are well in reach with manageable nanoparticle dimensions, even at room temperature. Applications may include ultrafast, optically driven switches, photo detectors operating at 500 THz, or highly nonlinear devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.