Abstract

Inelastic scattering of light by spin waves generates an energy flow between the light and magnetization fields, a process that can be enhanced and controlled by concentrating the light in magneto-optical resonators. Here, we model the cooling of a sphere made of a magnetic insulator, such as yttrium iron garnet, using a monochromatic laser source. When the magnon lifetimes are much larger than the optical ones, we can treat the latter as a Markovian bath for magnons. The steady-state magnons are canonically distributed with a temperature that is controlled by the light intensity. We predict that such a cooling process can significantly reduce the temperature of the magnetic order within current technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call