Abstract

We describe two-field optical techniques to control interactions in Feshbach resonances for two-body scattering in ultra-cold gases. These techniques create a molecular dark state in the closed channel of a magnetically tunable Feshbach resonance, greatly suppressing optical scattering compared to single optical field methods. The dark-state method enables control of the effective range, by creating narrow features that modify the energy dependence of the scattering phase shift, as well as control of the elastic and inelastic parts of the zero-energy s-wave scattering amplitude. We determine the scattering length and the effective range from an effective range expansion, by calculating the momentum-dependent scattering phase shift from the two-body scattering state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.