Abstract
Valley-polarized light–matter quasiparticles in two-dimensional semiconductor microcavities are demonstrated. Access to spin–valley physics may be useful for photonic quantum technologies. The formation of half-light half-matter quasiparticles under strong coupling results in properties unique from those of the constituent components. Fingerprints of both light and matter are imprinted on the new quasiparticles, called polaritons. In the context of two-dimensional (2D) materials, this opens up the possibility of exploiting the intriguing spin–valley physics of a bare semiconductor combined with the light mass of the photonic component for possible quantum technologies. Specifically, the valley degree of freedom1,2, which remained largely unexplored until the advent of these materials, is highly attractive in this context as it provides an optically accessible route for the control and manipulation of electron spin. Here, we report the observation of room-temperature strongly coupled light–matter quasiparticles that are valley polarized because of the coupling of photons with specific helicity to excitons that occupy quantum mechanically distinct valleys in momentum space. The realization of valley polaritons in 2D semiconductor microcavities presents the first step towards engineering valley-polaritonic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.