Abstract

X-ray free-electron lasers have had an enormous impact on x-ray science by achieving femtosecond pulses with unprecedented intensities. However, present-day facilities operating by the self-amplified spontaneous emission (SASE) principle have a number of shortcomings, namely, their radiation has a chaotic pulse profile and short coherence times. We put forward a scheme for a neon-based atomic inner-shell x-ray laser (XRL) which produces temporally and spatially coherent subfemtosecond pulses that are controlled by and synchronized to an optical laser with femtosecond precision. We envision that such an XRL will allow for numerous applications such as nuclear quantum optics and the study of ultrafast quantum dynamics of atoms, molecules, and condensed matter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call