Abstract

The successful integration of few-layer thick hexagonal boron nitride (hBN) into devices based on two-dimensional materials requires fast and non-destructive techniques to quantify their thickness. Optical contrast methods and Raman spectroscopy have been widely used to estimate the thickness of two-dimensional semiconductors and semi-metals. However, they have so far not been applied to two-dimensional insulators. In this work, we demonstrate the ability of optical contrast techniques to estimate the thickness of few-layer hBN on SiO2/Si substrates, which was also measured by atomic force microscopy. Optical contrast of hBN on SiO2/Si substrates exhibits a linear trend with the number of hBN monolayers in the few-layer thickness range. We also used bandpass filters (500–650 nm) to improve the effectiveness of the optical contrast methods for thickness estimations. We also investigated the thickness dependence of the high frequency in-plane E2g phonon mode of atomically thin hBN on SiO2/Si substrates by micro-Raman spectroscopy, which exhibits a weak thickness-dependence attributable to the in-plane vibration character of this mode. Ab initio calculations of the Raman active phonon modes of atomically thin free-standing crystals support these results, even if the substrate can reduce the frequency shift of the E2g phonon mode by reducing the hBN thickness. Therefore, the optical contrast method arises as the most suitable and fast technique to estimate the thickness of hBN nanosheets.

Highlights

  • Two-dimensional (2D) materials attract a lot of attention for their electronic and optoelectronic applications at the nanoscale due to their outstanding physical properties, differing from their bulk state

  • We demonstrate the ability of optical contrast techniques to estimate the thickness of few-layer hexagonal boron nitride (hBN) on SiO2/Si substrates, which was measured by atomic force microscopy

  • We investigated the thickness dependence of the high frequency in-plane E2g phonon mode of atomically thin hBN on SiO2/Si substrates by micro-Raman spectroscopy, which exhibits a weak thickness-dependence attributable to the in-plane vibration character of this mode

Read more

Summary

Introduction

Two-dimensional (2D) materials attract a lot of attention for their electronic and optoelectronic applications at the nanoscale due to their outstanding physical properties, differing from their bulk state. We demonstrate the ability of optical contrast techniques to estimate the thickness of few-layer hBN on SiO2/Si substrates, which was measured by atomic force microscopy. Optical contrast of hBN on SiO2/Si substrates exhibits a linear trend with the number of hBN monolayers in the few-layer thickness range.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.