Abstract

The linear optical and electronic properties of a monolayer graphene sheet are investigated using the Density Functional Theory within the Full Potential Linearized Augmented Plane Wave (FP-LAPW) formalism. Three approaches are used in this work: The Generalized Gradient Approximation (GGA), the Tran–Blaha modified Becke–Johnson exchange potential approximation (TB-mBJ); implemented in WIEN2K code; and GW (Green function G and screened Coulomb interaction W) implemented in Yambo code.The band gap of graphene with and without silicon doping and the effect of silicon on optical properties of graphene are calculated. The silicon doping opens the band gap of graphene and increases its optical conductivity. This material may be used in solar cell application. Other optical properties such as reflectivity and refractive index are also studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.