Abstract

High-temperature superconductors are difficult to model because most conventional theories fail for the strong repulsive interactions between electrons. But what if the correlations are not as strong as believed? Perhaps the magnetic correlations are more essential. Since their discovery in 1986, the high-temperature copper-oxide superconductors have been a central object of study in condensed-matter physics. Their highly unusual properties are widely (although not universally) believed to be a consequence of electron–electron interactions that are so strong that the traditional paradigms of condensed-matter physics do not apply: instead, entirely new concepts and techniques are required to describe the physics. In particular, the superconductivity is obtained by adding carriers to insulating ‘parent compounds’. These parent compounds have been identified1 as ‘Mott’ insulators, in which the lack of conduction arises from anomalously strong electron–electron repulsion. The unusual properties of Mott insulators are widely2 believed to be responsible for the high-temperature superconductivity. Here, we present a comparison of new theoretical calculations and published3,4,5,6,7,8 optical conductivity measurements, which challenges this belief. The analysis indicates that the correlation strength in the cuprates is not as strong as previously believed, in particular that the materials are not properly regarded as Mott insulators. Rather, antiferromagnetism seems to be necessary to obtain the insulating state. By implication, antiferromagnetism is essential to the properties of the doped metallic and superconducting state as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.