Abstract

We study AC conductivities in high-Tc cuprates, which offer us significant information to reveal the true electronic ground states. Based on the fluctuation-exchange (FLEX) approximation, current vertex corrections (CVC's) are correctly taken into account to satisfy the conservation laws. We find the significant role of the CVC's on the optical Hall conductivity in the presence of strong antiferromagnetic (AF) fluctuations. This fact leads to the failure of the relaxation time approximation (RTA). As a result, experimental highly unusual behaviors, (i) prominent frequency and temperature dependences of the optical Hall coefficient, and (ii) simple Drude form of the optical Hall andge for wide range of frequencies, are satisfactorily reproduced. In conclusion, both DC and AC transport phenomena in (slightly under-doped) high-Tc cuprates can be explained comprehensively in terms of nearly AF Fermi liquid, if one take the CVC's into account.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call