Abstract

Fluorinated ethylene propylene tubing is investigated as a method of preparing a contrast-resolution phantom for quantitative characterization of optical CT scanners and hydrogel dosimeters. Two sizes of tubing were examined: 6 and 13 mm inner diameter with 0.75 and 0.5 mm wall thicknesses, respectively. Water solutions of carbon black, nanoparticles in micelles provided continuously adjustable absorption contrast. Cross-sectional slices from two phantoms scanned with two different optical CT scanners are presented. Reconstructions from these simple phantoms can be used to identify scanner artefacts and improve instrument design. These phantoms represent a more reproducible approach than casting "gel fingers" into gel phantoms for system characterization. The thinner walled tubes have fewer optical artefacts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.