Abstract

Distortion of the hologram may occur when the photopolymer material used in the medium shrinks or expands. We analyzed interference fringe distortion for plane waves and a reference beam with an angular gap between recording and reproducing for the purpose of compensating for the distortion. We found that the wavefronts that could compensate for the distortion could approximately be obtained by linear interpolation of such angle-multiplexed holograms. We recorded 80 data pages with the angle-multiplexing method and obtained an optimized wavefront to compensate for hologram distortion on the first, fortieth, and eightieth data pages using adaptive optics with genetic algorithms and linear interpolated wavefronts at the other data pages. The calculation time for 80 wavefronts to compensate for distortion fell to 3/80th of that of having to calculate optimizations for all pages. The bit error rates were lower than 1.0 × 10−2 on all data pages reproduced using these wavefronts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.