Abstract
Owing to their large size, Rydberg atoms are promising tools for quantum technologies1,2, as they exhibit long-range dipole–dipole interactions and strong coupling to external fields. Recent experiments have demonstrated their appeal for quantum simulation purposes3–5, even though the relatively short lifetime of optically accessible Rydberg levels imposes limitations. Long-lived circular Rydberg states6,7 may provide a solution. However, the detection of circular states involves either destructive6 or complex7 measurement techniques. Moreover, so far, alkali circular states have been manipulated only by microwave fields, which are unable to address individual atoms. The use of circular states of a different group of atoms, the alkaline-earth metals, which have an optically active second valence electron, can circumvent these problems. Here we show how to use the electrostatic coupling between the two valence electrons of strontium to coherently manipulate a circular Rydberg state with optical pulses. We also exploit this coupling to map the state of the Rydberg electron onto that of the ionic core. This experiment opens the way to a state-selective spatially resolved non-destructive detection of circular states and to the realization of a hybrid optical–microwave platform for quantum technology. The capabilities of optically accessible Rydberg levels are limited by their lifetime. An experiment demonstrates how to detect and manipulate long-lived circular states through the coupling of valence electrons in alkaline-earth Rydberg atoms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.