Abstract

A fiber-optic-based, time-domain optical coherence tomography (OCT) system coupled with a pneumatically-actuated micro-lens is demonstrated. The OCT system uses a superluminescent diode emitting at a center wavelength of λ ≈ 1300 nm. Microsystem fabrication technologies employing polydimethylsiloxane (PDMS) are used to fabricate the micro-lens with an aperture of 2 mm. A B-scan is carried out while dynamically shifting the focal length of the micro-lens along the axial scan. The OCT scan results show a higher lateral resolution and higher contrast of the backscattered interference signals when using the tunable lens; hence, deeper axial scans are possible. The ability to miniaturize the dimensions of the micro-lens will allow the system to be applicable to en-face optical coherence tomography and endoscopic applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.