Abstract
Geometric morphometrics (GM) was used to compare the shape of the peripapillary retinal pigment epithelium-Bruch's membrane (ppRPE) layer imaged on spectral domain optical coherence tomography (SD-OCT) of patients with presumed optic nerve sheath meningiomas (pONSM) and normal subjects. We compared 2 groups: 30 normals to 10 patients (11 eyes) with pONSM. We digitized 20 equidistant semi-landmarks on OCT images of the ppRPE-layer, spanning 2500 μm on each side of the neural canal opening (NCO). Data were analyzed using standard GM techniques including a generalized least squares Procrustes superimposition, principal component analysis (PCA), thin-plate spline, and permutation statistical analysis to evaluate differences in shape. We also analyzed other variables with respect to shape including tumor size-proximity to the globe, age, retinal nerve fiber layer, and optic disc height. All pONSM patients were female (age 37-66 years); 10 had unilateral and 1 had bilateral optic nerve involvement. Ten of the eyes had optic disc edema at presentation, 4 went on to develop shunt vessels, and 4 had optic atrophy. The ppRPE-layer bordering the NCO in normals is V-shaped pointing away from the vitreous; the ppRPE-layer in pONSM is indented causing an inverted-U shaped deformation skewed nasally toward the vitreous. PCA showed a significant difference between normals and pONSM (permutation, n = 10,000, P = 0.001). The size and proximity of the tumor to the globe correlates with the shape of the ppRPE-layer (r = 0.75, P = 0.04). Correlation between shape variables and RNFL thickening (r = 0.51), optic disc height (r = 0.67), and age (r = 0.67) were not statistically significant. The shape of the RPE layer in pONSM is characterized by an inverted-U shape or indentation that differs significantly from normals. It is indistinguishable from the shape we previously reported in papilledema and is not caused by disc edema. The mechanism in pONSM is unknown but may involve a change in the compliance of the nerve and/or localized sequestration of cerebrospinal fluid in the distal optic nerve sheath.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.