Abstract

Thermic injuries are among the most severe injuries in childhood. Burn depth is the most relevant prognostic factor, and still its assessment is both difficult and controversial. This diagnostic uncertainty results in repeated wound assessments over a 10-day period and carries a relevant risk for over- and undertreatment. Precise wound assessment would thus be a significant step toward improved care. Optical coherence tomography (OCT) is a noninvasive laser-based technique with a penetration depth of ∼2 mm. It provides structural images of the skin while dynamic OCT (D-OCT) shows blood vessels. In this study, we investigated burns and scalds in 130 children with OCT and D-OCT to identify patterns of injury related to the depth of the burn wound. OCT and D-OCT images from burned skin differed consistently from normal skin. We observed several not formerly described morphologic patterns associated with burn injuries. Superficial wounds are characterized by a loss of the epidermal layer and a smooth surface. With deeper wounds, surface irregularity, loss of the dermal papillary pattern, disappearance of skin lines, and characteristic changes in the microvascular architecture were observed. This is the first systematic study of D-OCT in the assessment of burn wounds in children. A number of burn-associated patterns of injury were identified. Thus, D-OCT provided an "optical biopsy" of burn wounds that adds significant information about the severity of a burn wound.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.