Abstract

INTRODUCTIONCongenital heart defects (CHDs) affect thousands of newborns each year in the United States. Recent research using animal model systems indicates that the abnormal function of the early tubular heart precedes structural defects such as septal defects. Optical coherence tomography (OCT) is an imaging modality that can provide high spatial and temporal resolution to study both the structure and the function of the tubular heart. With technical advances in OCT imaging speed, especially with frequency domain OCT and image-based retrospective gating, it is now possible to image a beating avian embryonic heart in three dimensions under physiological conditions and follow morphogenesis over critical periods of developmental time. These technological advances have already revealed novel aspects of heart development. By expanding our understanding of heart development, research using OCT technology combined with other imaging modalities may eventually lead to strategies to predict, treat, and even prevent CHDs. This protocol provides some practical details for obtaining four-dimensional (4D) OCT images from beating embryonic quail hearts, with the necessary temporal and spatial resolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call