Abstract

Intracoronary thrombus from plaque erosion could cause fatal acute coronary syndrome (ACS). A conservative antithrombotic therapy has been proposed to treat ACS patients in lieu of stenting. It is speculated that the residual thrombus after aspiration thrombectomy would influence the prognosis of this treatment. However, biomechanical mechanisms affecting intracoronary thrombus remodeling and clinical outcome remain largely unknown. in vivo optical coherence tomography (OCT) data of a coronary plaque with two residual thrombi after antithrombotic therapy were acquired from an ACS patient with consent obtained. Three OCT-based fluid-structure interaction (FSI) models with different thrombus volumes, fluid-only, and structure-only models were constructed to simulate and compare the biomechanical interplay among blood flow, residual thrombus, and vessel wall mimicking different clinical situations. Our results showed that residual thrombus would decrease coronary volumetric flow rate by 9.3%, but elevate wall shear stress (WSS) by 29.4% and 75.5% at thrombi 1 and 2, respectively. WSS variations in a cardiac cycle from structure-only model were 12.1% and 13.5% higher at the two thrombus surfaces than those from FSI model. Intracoronary thrombi were subjected to compressive forces indicated by negative thrombus stress. Tandem intracoronary thrombus might influence coronary hemodynamics and solid mechanics differently. Computational modeling could be used to quantify biomechanical conditions under which patients could receive patient-specific treatment plan with optimized outcome after antithrombotic therapy. More patient studies with follow-up data are needed to continue the investigation and better understand mechanisms governing thrombus remodeling process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call