Abstract

Optical coherence tomography angiography (OCTA) is a label-free, noninvasive biomedical imaging modality for mapping microvascular networks and quantifying blood flow velocities in vivo. Simple computation and fast processing are critical for the OCTA in some applications. Herein, we report on a normalized differentiation method for mapping cerebral microvasculature with the advantages of simple analysis and high image quality, benefitting from computation of differentiation and characteristics of normalization. Normalized differentiation values are validated to have a nearly linear relationship with flow velocities in a range using a flow phantom. The measurements in a rat cerebral cortex show that the OCTA based on the normalized differentiation analysis can generate microvascular images with high quality and monitor spatiotemporal dynamics of blood flow with simple computation and fast processing before and after localized ischemia induced by arterial occlusion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.