Abstract
Acute lung injury (ALI) is a severe pulmonary disease leading to hypoxemia accompanied by a reduced compliance and partial edema of the lung. Most of the patients have to be ventilated to compensate for the lack of oxygen. The treatment is strongly connected with ventilator induced lung injury (VILI), which is believed to introduce further stress to the lung and changes in its elastic performance. A thorough understanding of the organs micro-structure is crucial to gain more insight into the course of the disease. Due to backscattering of near-infrared light, detailed description of lung morphology can be obtained using optical coherence tomography (OCT), a non-invasive, non-contact, high resolution and fast three-dimensional imaging technique. One of its drawbacks lies in the non-specificity of light distribution in relation to defined substances, like elastic biomolecules. Using fluorescence detection, these chemical components can be visualized by introducing specifically binding fluorophores. This study presents a combined setup for studying alveolar compliance depending on volume changes and elastic fiber distributions. Simultaneously acquired OCT and confocal fluorescence images allow an entire view into morphological rearrangements during ventilation for an ex vivo mouse model using continuous pulmonary airway pressure at different values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.