Abstract

Melanoma is the most aggressive type of skin cancer, with significant risk of fatality. Due to its pigmentation, light-based imaging and treatment techniques are limited to near the tumor surface, which is inadequate, for example, to evaluate the microvascular density that is associated with prognosis. White-light diffuse reflectance spectroscopy (DRS) and near-infrared optical coherence tomography (OCT) were used to evaluate the effect of a topically applied optical clearing agent (OCA) in melanoma in vivo and to image the microvascular network. DRS was performed using a contact fiber optic probe in the range from 450 to 650 nm. OCT imaging was performed using a swept-source system at 1310 nm. The OCT image data were processed using speckle variance and depth-encoded algorithms. Diffuse reflectance signals decreased with clearing, dropping by ∼ 90% after 45 min. OCT was able to image the microvasculature in the pigmented melanoma tissue with good spatial resolution up to a depth of ∼ 300 μm without the use of OCA; improved contrast resolution was achieved with optical clearing to a depth of ∼ 750 μm in tumor. These findings are relevant to potential clinical applications in melanoma, such as assessing prognosis and treatment responses. Optical clearing may also facilitate the use of light-based treatments such as photodynamic therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call