Abstract
Here, a deep learning (DL) algorithm based on deep neural networks is proposed and employed to predict the chiroptical response of two-dimensional (2D) chiral metamaterials. Specifically, these 2D metamaterials contain nine types of left-handed nanostructure arrays, including U-like, T-like, and I-like shapes. Both the traditional rigorous coupled wave analysis (RCWA) method and DL approach are utilized to study the circular dichroism (CD) in higher-order diffraction beams. One common feature of these chiral metamaterials is that they all exhibit the weakest intensity but the strongest CD response in the third-order diffracted beams. Our work suggests that the DL model can predict CD performance of a 2D chiral nanostructure with a computational speed that is four orders of magnitude faster than RCWA but preserves high accuracy. The DL modelintroduced in this work shows great potentials in exploring various chiroptical interactions in metamaterials and accelerating the design of hypersensitive photonic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.