Abstract

ABSTRACT Compact low-cost sensors for measuring particulate matter (PM) concentrations are receiving significant attention as they can be used in larger numbers and in a distributed manner. Most low-cost particle sensors work on optical scattering measurements from the aerosol. To ensure accurate and reliable determination of PM mass concentrations, a relationship of the scattering signal to mass concentration should be established. The scattering signal depends on the aerosol size distributions and particle refractive index. A systematic calibration of a low-cost particle sensor (Sharp GP2Y1010AU0F) was carried out by both experimental and computational studies. Sodium chloride, silica, and sucrose aerosols were used as test cases with size distributions measured using a scanning mobility particle sizer (SMPS). The mass concentration was estimated using the measured size distribution and density of the particles. Calculations of the scattered light intensity were done using these measured size distributions and known refractive index of the particles. The calculated scattered light intensity showed better linearity with the sensor signal compared to the mass concentration. To obtain a more accurate mass concentration estimation, a model was developed to determine a calibration factor (K). K is not universal for all aerosols, but depends on the size distribution and refractive index. To improve accuracy in estimation of mass concentration, an expression for K as a function of geometric mean diameter, geometric standard deviation, and refractive index is proposed. This approach not only provides a more accurate estimation of PM concentration, but also provides an estimate of the aerosol number concentration.

Highlights

  • Particulate matter (PM) is ubiquitous in the environment and is receiving significant attention due to potential impacts on health (Pope 3rd et al, 1995; Brunekreef and Holgate, 2002; Biswas and Wu, 2005; Oberdörster et al, 2005)

  • Compact low-cost sensors for measuring particulate matter (PM) concentrations are receiving significant attention as they can be used in larger numbers and in a distributed manner

  • The scattering signal depends on the aerosol size distributions and particle refractive index

Read more

Summary

Introduction

Particulate matter (PM) is ubiquitous in the environment and is receiving significant attention due to potential impacts on health (Pope 3rd et al, 1995; Brunekreef and Holgate, 2002; Biswas and Wu, 2005; Oberdörster et al, 2005). Calculations of the scattered light intensity were done using these measured size distributions and known refractive index of the particles.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call