Abstract

Two innovative optical fiber cable layouts designed to improve strain measurement accuracy for Brillouin Optical Time Domain Analysis (BOTDA) sensors through improved strain transfer efficiency are presented and discussed. Swept Wavelength Interferometry (SWI) is used to experimentally evaluate their performance alongside analytical models and numerical simulation through Finite Element Method (FEM). The results show good agreement between the different methods and show that the second sensing cable design presents good features to minimize the mismatch between measured and actual strain. Finally, the strain response of both strain and temperature sensing cables of this design are evaluated, showing that their difference in response is reliable enough to allow temperature compensation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.