Abstract

High quality Ge and Si <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x</sub> Ge <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1-x</sub> films grown on Si substrates are attractive for a wide range of applications in optics, optoelectronics, and high efficiency solar cells. In this study, heteroepitaxial growth of Ge on nanostructured Si surfaces has been investigated. Thermally evaporated amorphous Ge films are vacuum-deposited and crystallized by thermal annealing at 1000 °C. Scanning electron microscope (SEM), spectroscopy (RS), infrared (IR) transmission, and Raman methods are used to characterize amorphous and crystalline Ge films. SEM analysis reveals presence of dominant features including cracks, microscopic roughness, and islands. RS exhibits strong multiple peaks attributed to crystalline structures related to Si-Ge at ~ 444 cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-1</sup> and Ge at 300 cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-1</sup> ; narrow and stronger peaks are observed in thermally annealed films. A comparison of IR transmission measurements in 900-1700-nm spectral range shows that amorphous film absorption is significantly higher than that of crystalline films consistent with respective bandgaps. A more detailed analysis including EDX and XRD measurements will be presented at the conference.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.